Treatment of Severe Alcohol Withdrawal

Stacey L. Campbell, PharmD, MPH, BCPS
Clinical Pharmacy Specialist, Medical ICU
Emory University Hospital
Adjunct Clinical Instructor
Mercer University College of Pharmacy
Disclosures

• These individuals have the following to disclose concerning possible financial or personal relationships with commercial entities (or their competitors) that may be referenced in this presentation.

• The following individuals have nothing to disclose
Objectives

• Discuss the pathophysiology of alcohol withdrawal
• Describe the pharmacologic treatment options for alcohol withdrawal
• Review literature related to pharmacologic therapy for alcohol withdrawal
Definition of Alcohol Withdrawal Syndrome (AWS)

A cluster of symptoms which occurs in alcohol-dependent people after cessation or reduction in heavy prolonged alcohol use.
The Alcohol Abuse Epidemic

An estimated 8.2 million Americans suffer from alcohol dependence

- 1.2 million hospital admissions are related to EtOH abuse
- ~40% of patients in the emergency room (ER) suffer from EtOH dependence
- Incidence of AWS in the intensive care unit (ICU) ranges from 8-40%

NEJM. 2014;371:2109-2113.
Alcohol. 2014;48(4):375-90
Pathophysiology of Non-Alcoholic
Pathophysiology of Occasional and Chronic EtOH User

Intoxication: Occasional User

Chronic and Regular EtOH Use
Pathophysiology of AWS

GABA

Glutamate
Signs and symptoms of alcohol withdrawal

• Autonomic hyperactivity
 – Nausea/vomiting
 – Tremor
 – Diaphoresis
 – Tachycardia
 – Hypertension
 – Insomnia

• Hallucinations
 – Visual
 – Auditory
 – Tactile

Signs and symptoms of alcohol withdrawal

• Seizure
 – Affects ~10% of patients with AWS
 – Common in patients with history of multiple detoxifications or seizure
 – Characterized as diffuse, tonic-clonic seizures

• Delirium tremens
 – Affects ~5% of patients with AWS
 – Most severe form of AWS
 – Characterized by rapid fluctuation of consciousness and change in cognition occurring over a short period of time

• Kindling
Stages of AWS

Stage 1: Minor withdrawal symptoms
- 6-8 hours after last drink
- Tremors, diaphoresis, nausea/vomiting, tachycardia, hypertension

Stage 2: Alcoholic hallucinosis
- 10-30 hours after last drink
- Visual, auditory, and tactile disturbances

Stage 3: Alcohol withdrawal seizures
- 12-48 hours after last drink
- Generalized tonic-clonic seizures

Stage 4: Delirium tremens
- 48-96 hours after last drink
- Delirium, psychosis, hallucinations, hyperthermia, malignant hypertension, seizure, coma

DSM-5* Diagnostic Criteria for EtOH Withdrawal

Criterion A
- Cessation of or reduction in heavy and prolonged use of EtOH

Criterion B
- At least 2 symptoms
 - Autonomic hyperactivity
 - Increased hand tremor
 - Insomnia
 - Nausea/vomiting
 - Transient hallucinations or illusions
 - Psychomotor agitation
 - Anxiety
 - Generalized tonic-clonic seizures

* DSM-5 = Diagnostic and Statistical Manual of Mental Disorders, 5th Edition
Treatment of AWS
Treatment Goals

Keep the patient awake, calm, and cooperative

Reduce symptom severity and prevent major complications

Reduce long-term central nervous system complications
Identification of patients at risk for alcohol withdrawal

- Severe history of alcohol dependence
- History of withdrawal, withdrawal seizures, or delirium tremens (DTs)
- Increased duration and amount of drinking
- Binge pattern drinking
- Multiple past detoxifications
Predictors of Severe AWS

- Older age
- Past history of DTs or EtOH withdrawal seizure
- Severe withdrawal symptoms at initial assessment
- Co-morbid medical or surgical illness
- Presence of dehydration
- Electrolyte disturbances
- Deranged liver enzymes
- Presence of structural brain lesions

Prediction of Alcohol Withdrawal Severity Scale (PAWSS)

<table>
<thead>
<tr>
<th>Part A: Threshold Criteria:</th>
<th>Yes or No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Have you consumed any amount of EtOH (i.e. been drinking) within the last 30 days? OR did the patient have a “+” BAL* on admission?</td>
<td></td>
</tr>
<tr>
<td>If the answer to either is YES, proceed with test.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part B: Based on patient interview:</th>
<th>1 point each</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Have you been recently intoxicated/drunken within the last 30 days?</td>
<td></td>
</tr>
<tr>
<td>2. Have you ever undergone EtOH use disorder rehabilitation treatment or treatment for alcoholism?</td>
<td></td>
</tr>
<tr>
<td>3. Have you ever experienced any previous episodes of EtOH withdrawal, regardless of severity?</td>
<td></td>
</tr>
<tr>
<td>4. Have you ever experienced blackouts?</td>
<td></td>
</tr>
<tr>
<td>5. Have you ever experienced EtOH withdrawal seizures?</td>
<td></td>
</tr>
</tbody>
</table>

*BAL = blood alcohol level
Prediction of Alcohol Withdrawal Severity Scale (PAWSS)

Part B: Based on patient interview (continued):

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. Have you ever experienced delirium tremens or DT's?</td>
<td>1 point each</td>
</tr>
<tr>
<td>7. Have you combined EtOH with other "downers" like benzodiazepines or barbiturates during the last 9 days?</td>
<td>1 point each</td>
</tr>
<tr>
<td>8. Have you combined EtOH with any other substance of abuse during the last 90 days?</td>
<td>1 point each</td>
</tr>
</tbody>
</table>

Part C: Based on clinical evidence:

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Was the patient's blood alcohol level (BAL) on presentation ≥200?</td>
<td>1 point each</td>
</tr>
<tr>
<td>10. Is there evidence of increased autonomic activity? (i.e. HR >120 bpm, tremor, sweating, agitation, nausea)</td>
<td>1 point each</td>
</tr>
</tbody>
</table>

Total Score:

PAWSS score ≥4 suggests high risk of moderate to severe EtOH withdrawal.
Assessment Scales for AWS

- Clinical Institute Withdrawal Assessment for Alcohol (CIWA-A) Scale
- Clinical Institute Withdrawal Assessment for Alcohol Scale, Revised (CIWA-Ar)
- CIWA-AD
- Alcohol Withdrawal Scale
Clinical Institute Withdrawal Assessment of Alcohol Scale, Revised (CIWA-Ar)

- Most extensively studied tool to quantify alcohol withdrawal
- Well documented reliability, reproducibility, and validity
- 10 categories for assessment
 - 0-7 points for each category except clouding of senses
 - Total of 67 points allowed
<table>
<thead>
<tr>
<th>Pulse or heart rate, taken for one minute:</th>
<th>Blood pressure:</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAUSEA AND VOMITING—As “Do you feel sick to your stomach? Have you vomited?” Observation.</td>
<td></td>
</tr>
<tr>
<td>0 no nausea and no vomiting</td>
<td>0 none</td>
</tr>
<tr>
<td>1 mild nausea with no vomiting</td>
<td>1 very mild itching, pins and needles sensations, any burning, any numbness or do you feel bugs crawling on or under your skin? Observation.</td>
</tr>
<tr>
<td>2</td>
<td>2 mild itching, pins and needles, burning or numbness</td>
</tr>
<tr>
<td>3</td>
<td>3 moderate itching, pins and needles, burning or numbness</td>
</tr>
<tr>
<td>4 intermittent nausea with dry heaves</td>
<td>4 moderately severe hallucinations</td>
</tr>
<tr>
<td>5</td>
<td>5 severe hallucinations</td>
</tr>
<tr>
<td>6</td>
<td>6 extremely severe hallucinations</td>
</tr>
<tr>
<td>7 constant nausea, frequent dry heaves and vomiting</td>
<td>7 continuous hallucinations</td>
</tr>
<tr>
<td>TREMOR—Arms extended and fingers spread apart. Observation.</td>
<td></td>
</tr>
<tr>
<td>0 no tremor</td>
<td>0 not present</td>
</tr>
<tr>
<td>1 not visible, but can be felt fingertip to fingertip</td>
<td>1 very mild harshness or ability to frighten</td>
</tr>
<tr>
<td>2</td>
<td>2 mild harshness or ability to frighten</td>
</tr>
<tr>
<td>3</td>
<td>3 moderate harshness or ability to frighten</td>
</tr>
<tr>
<td>4 moderate, with patient’s arms extended</td>
<td>4 moderately severe hallucinations</td>
</tr>
<tr>
<td>5</td>
<td>5 severe hallucinations</td>
</tr>
<tr>
<td>6</td>
<td>6 extremely severe hallucinations</td>
</tr>
<tr>
<td>7 severe, even with arms not extended</td>
<td>7 continuous hallucinations</td>
</tr>
<tr>
<td>PAREOXYSMAL SWEATS—Observation.</td>
<td></td>
</tr>
<tr>
<td>0 no sweat visible</td>
<td>0 not present</td>
</tr>
<tr>
<td>1 barely perceptible sweating, palms moist</td>
<td>1 very mild sensitivity</td>
</tr>
<tr>
<td>2</td>
<td>2 mild sensitivity</td>
</tr>
<tr>
<td>3</td>
<td>3 moderate sensitivity</td>
</tr>
<tr>
<td>4 beads of sweat obvious on forehead</td>
<td>4 moderately severe hallucinations</td>
</tr>
<tr>
<td>5</td>
<td>5 severe hallucinations</td>
</tr>
<tr>
<td>6</td>
<td>6 extremely severe hallucinations</td>
</tr>
<tr>
<td>7 drenching sweats</td>
<td>7 continuous hallucinations</td>
</tr>
<tr>
<td>ANXIETY—Ask “Do you feel nervous?” Observation.</td>
<td></td>
</tr>
<tr>
<td>0 no anxiety, at ease</td>
<td>0 not present</td>
</tr>
<tr>
<td>1 mildly anxious</td>
<td>1 very mild sensitivity</td>
</tr>
<tr>
<td>2</td>
<td>2 mild sensitivity</td>
</tr>
<tr>
<td>3</td>
<td>3 moderate sensitivity</td>
</tr>
<tr>
<td>4 moderately anxious, or guarded, so anxiety is inferred</td>
<td>4 moderately severe hallucinations</td>
</tr>
<tr>
<td>5</td>
<td>5 severe hallucinations</td>
</tr>
<tr>
<td>6</td>
<td>6 extremely severe hallucinations</td>
</tr>
<tr>
<td>7 equivalent to acute panic attacks as seen in severe delirium or acute schizophrenic reactions</td>
<td>7 continuous hallucinations</td>
</tr>
<tr>
<td>AGITATION—Observation.</td>
<td></td>
</tr>
<tr>
<td>0 normal activity</td>
<td>0 not present</td>
</tr>
<tr>
<td>1 somewhat more than normal activity</td>
<td>1 very mild</td>
</tr>
<tr>
<td>2</td>
<td>2 mild</td>
</tr>
<tr>
<td>3</td>
<td>3 moderate</td>
</tr>
<tr>
<td>4 moderately fidgety and restless</td>
<td>4 moderately severe</td>
</tr>
<tr>
<td>5</td>
<td>5 severe</td>
</tr>
<tr>
<td>6</td>
<td>6 very severe</td>
</tr>
<tr>
<td>7 paces back and forth during most of the interview, or constantly thrashes about</td>
<td>7 extremely severe</td>
</tr>
</tbody>
</table>

This scale is not copyrighted and may be used freely.

ORIENTATION AND CLOUDING OF SENSORIUM—Ask “What day is this? Where are you? Who am I?”

0 oriented and can do serial additions	
1 cannot do serial additions or is uncertain about date	
2 disoriented for date by no more than 2 calendar days	
3 disoriented for date by more than 2 calendar days	
4 disoriented for place and/or person	

Total CIWA-A Score:	
Rater’s Initials:	
Maximum Possible Score: 67	
CIWA-Ar Classification of Severity

• Score 0-7 = minimum to mild withdrawal
 – Generally does not require treatment
 – Consider outpatient treatment

• Score 8-20 = moderate withdrawal
 – Closer monitoring required
 – Will require pharmacologic treatment

• Score ≥20 = severe withdrawal
 – Close monitoring required
 – Will require pharmacologic treatment
Supportive Care

- Fluid resuscitation
- Electrolyte replacement
- Vitamin repletion
 - Multivitamin
 - Thiamine
 - Folic acid
- Correction of hypoglycemia

NEJM. 2014;371:2109-2113.
Cleveland Clinic Journal of Medicine. 2016;83:67-79.
Pharmacologic Treatment

• First Line Therapy
 – Benzodiazepines (BZDs)

• Adjunctive Therapy
 – Severe or Refractory AWS: phenobarbital, propofol, and dexmedetomidine
 – Agitation: haloperidol
 – Cardiac adrenergic symptoms: clonidine, beta-blockers
Benzodiazepines

• Use as first-line therapy established in a 1969 study comparing different medications
 – Lowest incidence of DTs
 – Lowest incidence of EtOH withdrawal seizures
• Replace the inhibitory effect of alcohol which has been discontinued
• Choice of agent depends on dosage forms, pharmacokinetics, patient-specific factors, and cost

NEJM. 2014;371:2109-2113.
Benzodiazepines Used in AWS

<table>
<thead>
<tr>
<th>Dosage Forms</th>
<th>Chlordiazepoxide</th>
<th>Diazepam</th>
<th>Lorazepam</th>
<th>Oxazepam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equivalent Dosages</td>
<td>Oral</td>
<td>Oral, Gel, IM, IV</td>
<td>Oral, IM, IV</td>
<td>Oral</td>
</tr>
<tr>
<td>25mg</td>
<td>5mg</td>
<td>1mg</td>
<td>15mg</td>
<td></td>
</tr>
<tr>
<td>Half-life</td>
<td>5-15 hours with active metabolites >100 hours</td>
<td>30-60 hours with active metabolites >100 hours</td>
<td>10-20 hours</td>
<td>5-20 hours</td>
</tr>
<tr>
<td>Lipid Solubility</td>
<td>Less lipophilic than diazepam; slower onset of action</td>
<td>Highly lipophilic; quick onset of action</td>
<td>Less lipophilic than diazepam, slower onset of action</td>
<td>Less lipophilic than diazepam; slower onset of action</td>
</tr>
<tr>
<td>Effect of Hepatic Disease</td>
<td>Half-life increases in cirrhosis</td>
<td>Half-life increases in cirrhosis, acute viral hepatitis, chronic active hepatitis</td>
<td>Half-life increases in cirrhosis</td>
<td>Half-life increases in cirrhosis</td>
</tr>
<tr>
<td>Effect of Renal Disease</td>
<td>No effect</td>
<td>Decreases protein binding</td>
<td>Half-life increase; impaired elimination</td>
<td>No effect</td>
</tr>
<tr>
<td>Effect of Older Age</td>
<td>Slower absorption; half-life increases</td>
<td>Half-life increases; decrease in protein binding</td>
<td>No effect on half-life; decreased protein binding</td>
<td>No effect on half-life; decreased protein binding</td>
</tr>
</tbody>
</table>
Benzodiazepine Treatment Strategies

<table>
<thead>
<tr>
<th>Fixed-Schedule</th>
<th>Symptom-Triggered</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Set amount of BZD administered at regular intervals</td>
<td>• BZD given only if patient is symptomatic as determined by screening tool such as CIWA-Ar</td>
</tr>
<tr>
<td>• Additional doses can be given if needed</td>
<td>• Significantly reduces the amount of BZD given</td>
</tr>
<tr>
<td>• Preferred for patients who cannot be routinely monitored/outpatient setting</td>
<td>• Significantly reduces duration of treatment</td>
</tr>
<tr>
<td></td>
<td>• NOT recommended for patients with polysubstance abuse</td>
</tr>
</tbody>
</table>

101 patient admissions to detoxification unit

Symptom-triggered
n = 51

Chlordiazepoxide administered for CIWA-Ar ≥8

Symptom-triggered used 4 x less drug than fixed schedule and had shorter duration of treatment

Fixed-schedule
n = 50

Chlordiazepoxide taper administered q6hrs

Symptom-Triggered Therapy for Alcohol Withdrawal Syndrome in Medical Inpatients

Thomas M. Jaeger, MD; Robert H. Lohr, MD; and V. Shane Pankratz, PhD

216 patients admitted to general medical services

Preimplementation Group
n = 84

Post-implementation Group
n = 132

BZDs administered via usual care

BZDs administered via symptom-triggered protocol

Symptom-triggered was associated with decreased occurrence of DTs, but did not result in shorter duration of treatment

36 patients admitted to medical ICU

Preprotocol Group: Fixed-schedule
n = 16 episodes

Protocol Group: Symptom-triggered
n = 24 episodes

Midazolam administered as continuous infusion

Lorazepam administered based on Minnesota Detoxification Scale

Symptom-triggered was associated with decreased symptom control, amount of sedative required, and time spent receiving benzodiazepine infusion.

Dosing BZDs Using Symptom-Triggered Therapy

• Start BZD therapy with CIWA-Ar score ≥8, with subsequent dosing based on score reassessment
 – Suggested starting dose: chlordiazepoxide 25-50mg, lorazepam 1-2mg, or oxazepam 15mg

• Subsequent doses should be titrated upward, increasing by 1.5 to 2 times the previous dose
 – Reassess CIWA-Ar score at least every 1-2 hours after dose is administered
Dosing BZDs Using Symptom-Triggered Therapy

- When CIWA-Ar score <8 monitoring can be extended to every 4-8 hours
- If CIWA-Ar score ≥20 consider treatment and monitoring in the ICU
Examples of Symptom-Triggered Dosing and CIWA-Ar Scores

<table>
<thead>
<tr>
<th>CIWA-Ar Score</th>
<th>Chlordiazepoxide Dose (oral)</th>
<th>Lorazepam Dose (oral or IV)</th>
<th>Reassess CIWA-Ar and Vital Signs, and Redose</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-7</td>
<td>No medication necessary</td>
<td>No medication necessary</td>
<td>Every 2 hours</td>
</tr>
<tr>
<td>8-10</td>
<td>25-50mg</td>
<td>1-2mg</td>
<td>Every 2 hours</td>
</tr>
<tr>
<td>11-15</td>
<td>50-75mg</td>
<td>2-3mg</td>
<td>Every 1-2 hours</td>
</tr>
<tr>
<td>16-19</td>
<td>75-100mg</td>
<td>3-4mg</td>
<td>Every 1-2 hours</td>
</tr>
<tr>
<td>20 or greater</td>
<td>Evaluation for patient transfer to the ICU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIWA-Ar <8 for 3 consecutive checks</td>
<td>Reassess every 4 hours. If score remains <8 every 4 hours on 3 checks, reassess or redose every 8 hours. If CIWA-Ar score is <8 for 48 hours, discontinue monitoring.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pharmacologic Treatment

- **First Line Therapy**
 - Benzodiazepines (BZDs)

- **Adjunctive Therapy**
 - Severe and/or refractory AWS: phenobarbital, propofol, dexmedetomidine
 - Agitation: haloperidol
 - Cardiac adrenergic symptoms: clonidine, beta-blockers
Phenobarbital

- Barbiturate historically used in treatment of epilepsy
- Enhances the binding of GABA to the receptor and increases the duration of GABA mediated inhibitory currents
- Phenobarbital may achieve synergistic effects when administered with BZDs
- Reserved for patients who are refractory to BZDs

NEJM. 2014;371:2109-2113.
Phenobarbital versus diazepam for delirium tremens – a retrospective study

Ida Hjermø Michaelsen¹, John Erik Anderson², Anders Fink-Jensen³, Peter Allerup⁴ & Jakob Ulrichsen¹

194 patients who received treatment for DTs

Phenobarbital
n = 106

Diazepam
n = 88

Phenobarbital 100-200mg PO/IV q1hr

Diazepam 10-20mg IV q1hr

Length of DT and hospitalization, mortality, and rate of pneumonia were not affected by treatment

Dan Med Bul. 2010;57:A4169
102 patients with acute AWS seen in the ED

Phenobarbital + symptom-triggered therapy
\[n = 51 \]

Placebo + symptom-triggered therapy
\[n = 51 \]

Phenobarbital 10mg/kg IV once

Placebo 100mL IV once

Single dose of phenobarbital combined with symptom-triggered therapy resulted in decreased ICU admissions

A strategy of escalating doses of benzodiazepines and phenobarbital administration reduces the need for mechanical ventilation in delirium tremens*

Jeffrey A. Gold, MD; Binaya Rimal, MD; Anna Nolan, MD; Lewis S. Nelson, MD
Propofol

- Agonist at the GABA receptor within the central nervous system and inhibits N-methyl-D-aspartate (NMDA) glutamate receptors

- Use in AWS is primarily reserved for severe AWS refractory to BZDs in patients requiring mechanical ventilation

NEJM. 2014;371:2109-2113.
Management of benzodiazepine-resistant alcohol withdrawal across a healthcare system: Benzodiazepine dose-escalation with or without propofol

Adrian Wong, Neal J. Benedict, Brian R. Lohr, Anthony F. Pizon, Sandra L. Kane-Gill

<table>
<thead>
<tr>
<th>AWS Treatment Outcomes</th>
<th>BZD only (n = 33)</th>
<th>BZD plus propofol (n = 33)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration of mechanical ventilation, median d (IQR)</td>
<td>2.5 (1.0, 10.3)</td>
<td>7.0 (4.0, 16.0)</td>
<td>0.017</td>
</tr>
<tr>
<td>Nosocomial pneumonia, n (%)</td>
<td>1 (3.0)</td>
<td>12 (36.4)</td>
<td>0.001</td>
</tr>
<tr>
<td>Time to resolution of AWS, median d (IQR)</td>
<td>5.0 (2.8, 7.3)</td>
<td>7.0 (6.3, 9.8)</td>
<td>0.025</td>
</tr>
<tr>
<td>Diazepam equivalent of BZD in 7 day period, median mg (IQR)</td>
<td>576.7 (178.4, 1515.3)</td>
<td>743.3 (240.5, 1220.0)</td>
<td>0.378</td>
</tr>
<tr>
<td>Length of stay, median d (IQR)</td>
<td>4.0 (2.5, 8.5) 6.7 (3.0, 11.4)</td>
<td>10.0 (6.0, 17.3) 16.2 (10.0, 23.8)</td>
<td><0.001 <0.001</td>
</tr>
</tbody>
</table>
Use of Propofol-Containing Versus Benzodiazepine Regimens for Alcohol Withdrawal Requiring Mechanical Ventilation

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Propofol Infusion (n=8)</th>
<th>Propofol Plus BZD infusion (n=39)</th>
<th>BDZ Infusion (n=18)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to resolution of AWS, days</td>
<td>8 (6-11)</td>
<td>9 (5-14)</td>
<td>7 (5-10)</td>
<td>0.63</td>
</tr>
<tr>
<td>Duration of time on continuous infusion, hours</td>
<td>28 (6-36)</td>
<td>49 (18-92)</td>
<td>48 (38-93)</td>
<td>0.08</td>
</tr>
<tr>
<td>BDZ boluses while on continuous sedation, mg</td>
<td>15 (3-76)</td>
<td>10 (5-27)</td>
<td>36 (15-100)</td>
<td>0.16</td>
</tr>
<tr>
<td>Hospital length of stay, days</td>
<td>9 (7-15)</td>
<td>10 (7-16)</td>
<td>10 (7-16)</td>
<td>0.99</td>
</tr>
<tr>
<td>ICU length of stay, days</td>
<td>3 (2-5)</td>
<td>4 (3-9)</td>
<td>4 (3-9)</td>
<td>0.66</td>
</tr>
<tr>
<td>Mechanical ventilation, days</td>
<td>3 (2-3)</td>
<td>4 (3-8)</td>
<td>3 (3-6)</td>
<td>0.09</td>
</tr>
</tbody>
</table>
Dexmedetomidine

- Centrally acting alpha-2 agonist which activates receptors in the medullary vasomotor center
- Lacks GABA receptor activity required to prevent withdrawal related seizures
- Clinical effects include sedation, anxiolysis, and sympatholysis
- Use in severe refractory AWS in combination with BZDs

Cleveland Clinic Journal of Medicine. 2016;83:67-79.
Comparison of Clinical Outcomes in Nonintubated Patients with Severe Alcohol Withdrawal Syndrome Treated with Continuous-Infusion Sedatives: Dexmedetomidine versus Benzodiazepines

Angela L. Crispo, Mitchell J. Daley, Jodie L. Pepin, Paul H. Harford, and Carlos V.R. Brown

<table>
<thead>
<tr>
<th>Efficacy and safety endpoints</th>
<th>BZD group (n = 33)</th>
<th>Dexmedetomidine group (n = 28)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composite efficacy endpoint</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiratory distress</td>
<td>3 (9.1)</td>
<td>2 (7.1)</td>
<td>>0.99</td>
</tr>
<tr>
<td>Seizure</td>
<td>3 (9.1)</td>
<td>2 (7.1)</td>
<td>>0.99</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1 (3.6)</td>
<td>0.46</td>
</tr>
<tr>
<td>RASS score < +1 within 24 hours</td>
<td>33 (100)</td>
<td>28 (100)</td>
<td>>0.99</td>
</tr>
<tr>
<td>Hospital length of stay, days</td>
<td>9.7 +/- 7</td>
<td>10.2 +/-</td>
<td>0.88</td>
</tr>
<tr>
<td>Bradycardia</td>
<td>5 (15.2)</td>
<td>13 (46.4)</td>
<td><0.01</td>
</tr>
<tr>
<td>Hypotension</td>
<td>4 (12.1)</td>
<td>12 (42.9)</td>
<td><0.01</td>
</tr>
<tr>
<td>Cost/hospitalization, $</td>
<td>11,467.69 +/- 1568.48</td>
<td>17,014.60 +/- 2180.62</td>
<td>0.11</td>
</tr>
</tbody>
</table>

Retrospective Review of Critically Ill Patients Experiencing Alcohol Withdrawal: Dexmedetomidine Versus Propofol and/or Lorazepam Continuous Infusions

Kimberly A. Ludtke, PharmD, BCPS; Kevin S. Stanley, PharmD, BCPS*; Natalie L. Yount, PharmD, BCPS*; and Richard D. Gerkin, MD†*

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Patients treated with dexmedetomidine (n = 15)</th>
<th>Patients treated with propofol and/or lorazepam (n = 33)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean CIWA-Ar score</td>
<td>23.1</td>
<td>15</td>
<td>0.39</td>
</tr>
<tr>
<td>Mechanical ventilation</td>
<td>2</td>
<td>10</td>
<td>0.006</td>
</tr>
<tr>
<td>Mean length of intubation, days</td>
<td>0.95</td>
<td>4.1</td>
<td>0.264</td>
</tr>
<tr>
<td>Mean ICU length of stay, days</td>
<td>2.2</td>
<td>4.8</td>
<td>0.016</td>
</tr>
<tr>
<td>Mean hospital length of stay, days</td>
<td>5.7</td>
<td>10</td>
<td>0.008</td>
</tr>
</tbody>
</table>
Evaluating the effects of dexmedetomidine compared to propofol as adjunctive therapy in patients with alcohol withdrawal
A Randomized, Double-Blind, Placebo-Controlled Dose Range Study of Dexmedetomidine as Adjunctive Therapy for Alcohol Withdrawal*

Scott W. Mueller, PharmD; Candice R. Preslaski, PharmD; Tyree H. Kiser, PharmD, FCCP, FCCM; Douglas N. Fish, PharmD, FCCP, FCCM; James C. Lavelle, MD; Stephen P. Malkoski, MD, PhD; Robert MacLaren, PharmD, MPH, FCCP, FCCM

24 patients admitted to the medical ICU with severe AWS

- Lorazepam with placebo \(n = 8 \)
- Lorazepam with dexmedetomidine 0.4mcg/kg/hr \(n = 8 \)
- Lorazepam with dexmedetomidine 1.2mcg/kg/hr \(n = 8 \)

Adjunctive dexmedetomidine for severe alcohol withdrawal maintains symptom control and reduces lorazepam exposure in the short term

Pharmacologic Treatment

• First Line Therapy
 – Benzodiazepines (BZDs)

• Adjunctive Therapy
 – Severe and/or refractory AWS: phenobarbital, propofol, dexmedetomidine
 – Agitation: haloperidol
 – Cardiac adrenergic symptoms: clonidine, beta-blockers
Therapies to Avoid in Severe AWS

- Ethanol
- Antiepileptics
 - Lack benefit as monotherapy or adjunctive therapy
- Magnesium
 - No clinical benefit in patients with normal serum concentrations

NEJM. 2014;371:2109-2113.
Summary

• Alcohol dependence affects a large number of Americans
• Symptoms of AWS are due to a down-regulation of GABA and up-regulation of glutamate
• Symptoms can range from mild discomfort to severe withdrawal (seizure, DTs)
• BZDs remain the drug of choice for patients who experience significant symptoms of withdrawal
Summary

• Use of a symptom triggered strategy for BZD administration has been associated with decrease in BZD use and duration of treatment

• Adjunctive therapy may be considered in conjunction with BZDs in severe or refractory AWS
Treatment of Severe Alcohol Withdrawal

Stacey L. Campbell, PharmD, MPH, BCPS
Clinical Pharmacy Specialist, Medical ICU
Emory University Hospital
Adjunct Clinical Instructor
Mercer University College of Pharmacy